Hydrocarbon gas generation from pyrolysis of extracts and residues of low maturity solid bitumens from the Sichuan Basin, China

Zixiang Wang a,b,c, Yongli Wang a,n, Baoxiang Wu a, Gen Wang a,b, Zepeng Sun a,b, Liang Xu a,b, Shenzheng Zhu a,b, Lina Sun a,b, Zhifu Wei a

a Key Laboratory of Petroleum Resources, Gansu Province/Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, China
b University of Chinese Academy of Sciences, Beijing 100049, China
c Sinopec Jianghan Oilfield Company, Wuhan, Hubei 430223, China

Abstract

Two sets of pyrolysis experiments were performed on bitumen “A” (BA) and extracted organic matter (ER) from low-maturity solid bitumen at heating rates of 2 °C/h and 20 °C/h in confined systems (gold capsules). The main observations can be listed as follows: (1) BA and ER have high generation potential of hydrocarbons and were a significant secondary hydrocarbon source. (2) Both have similar evolutionary characteristics of hydrocarbon gas generation, and have high C1/C1–5 values than those from an Ordovician normal oil. Ea distributions of the methane generated from pyrolysis of BA and ER is far lower than that of Ordovician normal oil. (3) The evolution of stable carbon isotope values of individual hydrocarbon gases can be divided into three stages. Plots of lnC1/C2 versus lnC2/C3, d13C1–d13C2 versus ln(C1/C2) and d13C2–d13C3 versus ln(C2/C3) clearly illustrate the characteristics of hydrocarbon gases generated from BA and ER at different thermal maturity stages. (4) Basin modelling reconstructions of the hydrocarbon generation history of BA and ER in Sinian and Cambrian strata respectively indicate: Hydrocarbon gas generation from ER started in the Middle Jurassic, and ended in the Early Cretaceous with a maturity equivalent to Easy%Ro ≈ 2.2%. The final conversion rate of C1–5 and C1 are 0.71 and 0.48, respectively. Hydrocarbon gas generation from BA started in the Early Jurassic, and ended in the Early Cretaceous with an Easy%Ro ≈ 3.0%. The final conversion rate of C1–5 and C1 are 0.90 and 0.81, respectively.

1. Introduction

Interest in Sinian-lower Palaeozoic petroleum systems in the Sichuan Basin has increased during the last decade (Zou et al., 2014). Since 2011, giant gas fields with estimated reserves of more than one trillion cubic meters have been discovered in Sinian and Cambrian strata in the Gaoshiti-Moxi region, central Sichuan paleo-uplift (Du et al., 2014).

There is still significant debate ongoing regarding the source of the Sinian-Cambrian gas accumulations, and the history and characteristics of hydrocarbon gas generation. Abundant pyrobitumen deposits have been found in Sinian to Mesozoic reservoir rocks in the Tarim Basin, Sichuan Basin, and other areas in southern China (Xie et al., 2005; Zhang et al., 2005; Wei et al., 2007; Xiao et al., 2007; Jin et al., 2014). The pyrobitumen is interpreted to be derived from crude oils that have undergone intense thermal degradation and to be evidence of a secondary oil cracking origin for the gas in Sinian-Cambrian gas fields. Many studies have focused on high-maturity pyrobitumen (Xie et al., 2005; Zhang et al., 2005; Wei et al., 2007; Xiao et al., 2007; Jin et al., 2014), but few have reported on the hydrocarbon gas generation characteristics, kinetics and history of Sinian-Cambrian source rocks because of a lack of suitable low-maturity source rocks (Wang et al., 2013). Fortunately, abundant low-maturity solid bitumen has been discovered in the NE part of the Longmenshan fold-thrust belt in the NW Sichuan Basin. A popular idea is that the low-maturity bitumen originated from the Lower Cambrian, which has been proposed as the major source rock of Sinian-Cambrian gas accumulations (Zhou et al., 2007, 2013; Deng et al., 2008; Huang and Wang, 2008; Liu et al., 2009).

In this study, bitumen “A” (BA) and extraction residue (ER) were obtained from a low-maturity bitumen sample and pyrolyzed in sealed gold tube experiments over a range of temperatures. The gas composition, hydrocarbon gas stable carbon isotope signatures and the pertinent evolution history of hydrocarbon gases from BA...
and ER were assessed with the intent of providing new insights into the origin of gas in the Sinian-Cambrian reservoirs in the Sichuan Basin.

2. Samples and experimental methods

2.1. Samples

A sample of solid bitumen was collected from an outcrop in Kuangshanliang, northwest Sichuan Basin. The outcrop is located in an exhumed paleo-reservoir. Previous studies indicate that the solid bitumen was derived from crude oil, charged from Lower Cambrian black shales during the Early-mid Jurassic and has not suffered significant thermal degradation due to post-Jurassic uplift of the reservoir rock (Zhou et al., 2013; Zhang et al., 2014). The solid bitumens are depleted in low molecular weight hydrocarbons due to evaporation and biodegradation during exposure to the atmosphere (Huang and Wang, 2008) (Fig. 1). Geochemical data for the solid bitumen are presented in Table 1.

2.1.1. Sample preparation

An aliquot of the bituminous dike sample was crushed into powder and extracted for 72 h with chloroform using a Soxhlet apparatus. Chloroform soluble bitumen (Bitumen “A”, BA) and residue (Extracted residual, ER) were obtained with relative proportions of 8.3:91.7 (v:v) respectively. SARA analysis and stable carbon isotope data of BA and ER are presented in Table 2.

2.2. Confined pyrolysis experiments

Two sets of pyrolysis experiments were conducted, on BA and ER samples respectively using flexible gold capsules (4 mm outside diameter, 0.25 mm wall thickness and 40-mm length) and pyrolyzed within steel pressure vessels.

The capsules were welded at one end before loading samples. Each capsule was loaded with 15–60 mg sample. For samples heated at low temperature, a larger amount of sample was used to produce sufficient gas for subsequent compositional analyses. Once loaded, the capsule was purged with argon, before the open end was squeezed with a vice to create an initial seal and then welded in the presence of argon. During welding, the previously welded end of gold tube was submerged in cold water to minimize heat transferred to the reactants.

The pyrolysis system can accommodate 16 pressure vessels in a single furnace. A fan was installed at the bottom of the furnace to ensure a homogeneous temperature inside. The vessels were previously filled with water and two capsules containing BA and ER were placed together in each vessel. The internal pressure of the vessels, which were connected to each other via tubes, was adjusted to 50 MPa by pumping water into the vessels before heating. This pressure setting was used to simulate subsurface pressure conditions while also taking experimental safety into account. This pressure was maintained automatically by pumping water into or out of the vessels during the pyrolysis experiments. The range of error of the pressure is ±0.1 MPa.

The vessels were pre-heated from room temperature (about 20 °C) to 250 °C within 10 h and then from 250 °C to 600 °C at a rate of 20 °C/h or 2 °C/h. Two thermocouples were used to monitor the temperature during the pyrolysis. One thermocouple was attached to the outside wall of a vessel to monitor the oven temperatures while the other was placed inside the same vessel to monitor the temperature inside. The former temperatures were slightly higher than the latter with a difference < 0.5 °C. The range of error of the recorded temperature was ±1 °C. The vessel with two gold tube sample (BA and ER) was removed from the oven at temperature intervals of 12 °C or 24 °C from 336 °C to 600 °C. Each vessel was quenched to room temperature in cold water within 10 min. The thermal maturity of samples in the simulation experiment was calculated as the vitrinite reflectance equivalence using the ‘Easy%Ro’ method of Sweeney and Burnham (1990).

2.3. Chemical and carbon isotopic analyses of gas components

After pyrolysis, the volatile components in the capsules were collected in a special device connected to an Agilent 6890N gas chromatograph (GC) modified by Wasson ECE Instrumentation, as described previously by Pan et al. (2006, 2008). Briefly, the whole device was first evacuated by a vacuum pump to reach an internal pressure < 1 × 10^2 Pa. The gold capsule was then pierced in the vacuum device with a needle, allowing the gases to escape into the device. The valve connecting the device and the modified GC was opened to allow the gas components to enter the GC, through which the GC analyses of both the organic and inorganic gas components were performed in an automatically controlled procedure. GC analyses were conducted with a two-channel Hewlett–Packard 6890 GC custom configured (Wasson ECE) with eight (two capillary and six packed) columns and one FID and two TCD providing simultaneous detection of several organic and inorganic gases. Helium (for inorganic gas analysis) or nitrogen (organic) were used as carrier gases and the GC oven was programmed from 70 °C (held for 5 min) to 130 °C at 15 °C/min, then to a final 180 °C at 25 °C/min (held for 4 min). The analysis of all gases was carried out by one single injection.
After GC analysis, the remaining gas within the device, approximately 80% of the initial volume, was sampled for isotopic composition analysis using a syringe through the septum on the device. Isotope analysis was performed on a VG Isocirch II isotope ratio mass spectrometer (IRMS) interfaced with an HP 5890 GC, fitted with a Poraplot Q column (30 m × 0.32 mm i.d.). Helium was used as the carrier gas. The column head pressure was 8.5 psi. The GC oven temperature was initially held at 40 °C for 3 min, ramped from 40 °C to 180 °C at 20 °C/min, and held at 180 °C for 5 min. Carbon isotope ratios for individual gaseous hydrocarbon compounds were measured using CO₂ as a reference gas, which was automatically introduced into the IRMS at the beginning and end of each analysis. The carbon isotope value of the CO₂ reference gas was calibrated against NBS-22 oil. In addition, a standard mixture of gaseous hydrocarbons (C1–C4), with known isotope compositions calibrated by our laboratory, was used daily to check the performance of the instrument. The standard deviation for replicate analyses of this mixture is < 0.3‰ for each compound.

2.4. Kinetic modelling of the generation of hydrocarbon gases

Kinetic parameters were determined for the generation of gaseous hydrocarbons using the Kinetics 2000 software developed by Braun and Burnham (1998). We set a fixed A factor of 1 × 10^{14} S^{-1} for the generation of methane in methane, and a fixed A factor of 1 × 10^{13} S^{-1} for the generation of C1–5 in volume, following the approach of previous studies (Pan et al., 2010, 2012). The Kinetics 2000 software generates the value of the A factor and the discrete distribution of activation energies based on the input data from the two heating rates (i.e., time, temperature and the conversion value for C1 and C1–5 generation).

3. Results and discussion

3.1. Yields of gas components

The amounts and ratios of gas components produced by pyrolysis of BA and ER are shown in Table 3 and Fig. 2. For both two sets of experiments, the yield of methane increased consistently with higher experimental temperatures. For BA, the final yield of methane generated was 352.02 ml/g at the 20 °C/h heating rate and 364.15 ml/g at the 2 °C/h heating rate. For ER, the final amount of methane generated is 268.90 ml/g at the 20 °C/h heating rate and 271.35 ml/g at the 2 °C/h heating rate. Under the same temperature conditions, the yields of the C1–5 increased with temperature over the whole temperature range (Fig. 2f, Table 3). Overall, the yield of C1 increased was greater from BA than from ER. For example, in the 20 °C/h heating rate experiment, the maximum volume and mass yields of the C1–5 from BA were 360.23 ml/g and 266.82 mg/g, respectively; whereas from ER the yields were only 273.36 ml/g and 205.54 mg/g, respectively (Fig. 2f).

3.2. Ratios of C1/C1–5

For both experiments with BA and ER, the C1/C1–5 ratio first decreased as temperature increased from 334.7 to 407.2 °C, then increased as temperature increased further in the 20 °C/h heating rate experiment. For 2 °C/h heating rate experiment, this ratio first decreased from 335.0 °C to 359.1 °C and then increased as temperature increased further (Fig. 3). The C1/C1–5 values were similar for both sets of experiments with BA and ER, and were significantly higher than those from pyrolysis of Ordovician oil (composed primarily of saturates) in the studies by Pan et al. (2010, 2012) (Table 2). Compared with the Ordovician oil used by Pan et al. (2010, 2012), which is composed primarily of saturates, BA mainly consists of asphaltenes (83.8%) and resins (14.9%). This suggests that asphaltenes and resins are more prone to produce primarily methane, while saturates are more likely to produce wet gases. This interpretation is consistent with the results of previous studies (Tian et al., 2012).

3.3. Stable carbon isotope compositions of gas components

The δ^{13}C profiles of methane, ethane and propane of both the 20 °C/h and the 2 °C/h pyrolysis series are shown in Fig. 4. The carbon isotope compositions of methane, ethane and propane respectively were similar for both the two sets of experiments with BA and ER. The evolution of stable carbon isotope values of individual hydrocarbon gas could be divided into three stages in our experiments: (1) When %Ro < 0.8%, δ^{13}C1, δ^{13}C2 and δ^{13}C3 all become isotopically lighter with maturity, and show a partial carbon isotope trend reversals where δ^{13}C2 > δ^{13}C3 > δ^{13}C1. The δ^{13}C2 and δ^{13}C3 values are more positive than the carbon isotope values of the initial samples, and the gap between δ^{13}C2 and δ^{13}C3 narrows as maturity increases. Similar results were observed in pyrolysis experiment of asphaltenes by Wang et al. (2010). This is quite different from kerogen or oil cracking that generally is characterized by normal isotope ordering, i.e., δ^{13}C1 < δ^{13}C2 < δ^{13}C3. The reason for the isotope reversal is still not fully understood and needs further research on reaction mechanisms. (2) In the %Ro range from 0.8% to 1.6%, the changes in δ^{13}C1, δ^{13}C2 and δ^{13}C3 are not

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Geochemical characteristics of the bitumen sample used in the pyrolysis experiments.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>TOC (%)</td>
</tr>
<tr>
<td>Solid bitumen</td>
<td>58.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Gross compositions and stable isotope values for BA, ER and Ordovician oil used in the pyrolysis experiments.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>Saturate (%)</td>
</tr>
<tr>
<td>BA (8.3%)</td>
<td>0.04</td>
</tr>
<tr>
<td>ER (91.7%)</td>
<td>–</td>
</tr>
<tr>
<td>Ordovician oil</td>
<td>81.7</td>
</tr>
</tbody>
</table>

a Data are from Pan et al. (2010).
Table 3
Hydrocarbon yields and their stable carbon isotope compositions from the pyrolysis experiments of BA and ER.

<table>
<thead>
<tr>
<th>T/°C</th>
<th>EasyRo (%)</th>
<th>C1 (ml/g)</th>
<th>C2 (ml/g)</th>
<th>C3 (ml/g)</th>
<th>C4+C5 (ml/g)</th>
<th>C2–5 (ml/g)</th>
<th>C1–5 (ml/g)</th>
<th>C1 (mg/g)</th>
<th>C2 (mg/g)</th>
<th>C3 (mg/g)</th>
<th>C4+C5 (mg/g)</th>
<th>C2–5 (mg/g)</th>
<th>C1–5 (mg/g)</th>
</tr>
</thead>
</table>

Bitumen "A" (20°C/h)

<table>
<thead>
<tr>
<th>T/°C</th>
<th>EasyRo (%)</th>
<th>C1 (ml/g)</th>
<th>C2 (ml/g)</th>
<th>C3 (ml/g)</th>
<th>C4+C5 (ml/g)</th>
<th>C2–5 (ml/g)</th>
<th>C1–5 (mg/g)</th>
<th>C1 (mg/g)</th>
<th>C2 (mg/g)</th>
<th>C3 (mg/g)</th>
<th>C4+C5 (mg/g)</th>
<th>C2–5 (mg/g)</th>
<th>C1–5 (mg/g)</th>
</tr>
</thead>
</table>

Bitumen "A" (2°C/h)

<table>
<thead>
<tr>
<th>T/°C</th>
<th>EasyRo (%)</th>
<th>C1 (ml/g)</th>
<th>C2 (ml/g)</th>
<th>C3 (ml/g)</th>
<th>C4+C5 (ml/g)</th>
<th>C2–5 (ml/g)</th>
<th>C1–5 (mg/g)</th>
<th>C1 (mg/g)</th>
<th>C2 (mg/g)</th>
<th>C3 (mg/g)</th>
<th>C4+C5 (mg/g)</th>
<th>C2–5 (mg/g)</th>
<th>C1–5 (mg/g)</th>
</tr>
</thead>
</table>

Extracted residual (20°C/h)

<table>
<thead>
<tr>
<th>T/°C</th>
<th>EasyRo (%)</th>
<th>C1 (ml/g)</th>
<th>C2 (ml/g)</th>
<th>C3 (ml/g)</th>
<th>C4+C5 (ml/g)</th>
<th>C2–5 (ml/g)</th>
<th>C1–5 (mg/g)</th>
<th>C1 (mg/g)</th>
<th>C2 (mg/g)</th>
<th>C3 (mg/g)</th>
<th>C4+C5 (mg/g)</th>
<th>C2–5 (mg/g)</th>
<th>C1–5 (mg/g)</th>
</tr>
</thead>
</table>

Extracted residual (2°C/h)

<table>
<thead>
<tr>
<th>T/°C</th>
<th>EasyRo (%)</th>
<th>C1 (ml/g)</th>
<th>C2 (ml/g)</th>
<th>C3 (ml/g)</th>
<th>C4+C5 (ml/g)</th>
<th>C2–5 (ml/g)</th>
<th>C1–5 (mg/g)</th>
<th>C1 (mg/g)</th>
<th>C2 (mg/g)</th>
<th>C3 (mg/g)</th>
<th>C4+C5 (mg/g)</th>
<th>C2–5 (mg/g)</th>
<th>C1–5 (mg/g)</th>
</tr>
</thead>
</table>

* Calculated based on weight yields of hydrocarbon gases.
Fig. 2. Yields of gaseous hydrocarbons versus temperature for BA and ER at the two heating temperatures.

Fig. 3. C_1/C_{1-5} ratio of gaseous hydrocarbons generated by BA and ER pyrolysis experiments versus temperature (data for Ordovician oil are from Pan et al. [2012]).
significant. The values of $\delta^{13}C_2$ and $\delta^{13}C_3$ are more negative than the bulk carbon isotope values of initial samples (−35.8‰ and −35.2‰ for BA and ER, respectively), but more positive than $\delta^{13}C_1$. (3) When %Ro > 1.6%, $\delta^{13}C_1$, $\delta^{13}C_2$ and $\delta^{13}C_3$ values rapidly increase with maturity. The $\delta^{13}C_1$ values approach and are more negative than the carbon isotope values of the initial BA and ER at all temperatures, and the final $\delta^{13}C$ values of C_1 are similar to those of C_2 and C_3 in stage two. The $\delta^{13}C_2$ and $\delta^{13}C_3$ were higher than the values of initial BA and ER. This is in accord with the Rayleigh Fractionation model.

3.4. Evolution of hydrocarbon gases during pyrolysis

The pyrolysis experiments are closed-system experiments. Therefore, the analysis of gas composition and the evolution of stable carbon isotope composition in the gas are based on the net yields of generation and decomposition via different pathways.

3.4.1. $\ln(C_1/C_2)$ versus $\ln(C_2/C_3)$

The plots of $\ln(C_1/C_2)$ versus $\ln(C_2/C_3)$ based on the C_1–C_3 composition of natural gases at different thermal maturities can help distinguishing whether methane is directly sourced from kerogen or, alternatively, by secondary oil cracking (Prinzhofer and Huc, 1995). The C_2/C_3 ratio is almost constant during primary cracking (it may even decrease), whereas it increases drastically during the secondary cracking of oils. In contrast, the ratio of C_1/C_2 increases progressively during primary cracking and is the almost constant during secondary cracking. Plots of $\ln(C_1/C_2)$ versus $\ln(C_2/C_3)$ obtained from BA and ER under two heating regimes are shown in Fig. 5.

On the basis of the molecular proportions from the pyrolysis of Ordovician kukersite kerogen, which is a known hydrocarbon source rock in the Sinian-lower Palaeozoic strata, Wang et al. (2013) suggested that the plots of $\ln(C_1/C_2)$ versus $\ln(C_2/C_3)$ showed four distinct stages. Hydrocarbon gases from our pyrolysis experiments on both BA and ER show similar trends (Fig. 5): (a) An initial slight decrease in both parameters is observed at pyrolysis temperatures below 407 °C for 20 °C/h and 360 °C for 2 °C/h, due to preferential production of $C_3 > C_2 > C_1$. This indicates that the initial cracking of BA and ER preferentially generate heavier hydrocarbon gases than methane. (b) $\ln(C_1/C_2)$ increased as $\ln(C_2/C_3)$ remained relatively unchanged within the temperature ranges of 407–455 °C for 20 °C/h and 360–407 °C for 2 °C/h. This indicates increased production of methane relative to ethane, but little relative change between ethane and propane generation, typical of kerogen cracking. (c) Both parameters showed a sharp increase during this stage. Critical temperatures $C_{T C_{C_4+C_5}}$, $C_{T C_3}$ and $C_{T C_2}$ are reached in the early part of this stage, suggesting that decomposition rates exceed generation rates for $C_4 + C_5$, C_3 and C_2 in turn, typical of secondary oil cracking (Prinzhofer and Huc, 1995). (d) At pyrolysis temperatures above 575 °C for 20 °C/h and 527 °C for
2 °C/h, both of the parameters show trends similar to the second stage but with larger ln(C1/C2) and ln(C2/C3) ratios. Given that almost all of the C2 is present in the wet gas at this stage, this trend is attributed to the continued cracking of C2 into C1 at these very high pyrolysis temperatures.

In addition, during the third stage and the fourth stage, both ln(C1/C2) and ln(C2/C3) are higher for ER than BA at the same temperatures, suggesting that ER generated leaner gases than BA under the same conditions.

3.4.2. δ13C1–δ13C2 versus ln(C1/C2)

Previous studies have suggested that the plot of δ13C1–δ13C2 versus ln(C1/C2) may be useful in elucidating the origins of hydrocarbon gases (Ricchiuto and Schoell, 1988; Jenden et al., 1993; Prinzhofer and Huc, 1995). In general, a series of thermogenic gases from the same source but with different degrees of maturity will show a positive slope. With increasing maturity, the relative proportion of methane increases, and the difference in the isotopic ratio decreases and tends toward zero but the absolute value remains negative (Prinzhofer and Huc, 1995). Fig. 6 presents the data of gases evolved from pyrolysis of BA and ER in this type of plot. As expected, the evolution of hydrocarbon gas shows three distinct stages although the trend is different from that of Prinzhofer and Huc (1995). The three stages we observe in our experiments are as follows:

(a) A slight decrease in ln(C1/C2) and rapid increase in δ13C1–δ13C2 due to preferential production of C2 over C1. This suggests preferential initial cracking of BA and ER into ethane over methane. (b) Both parameters show an increase in the second stage, which is similar to the results of Prinzhofer and Huc (1995). This indicates increased production of methane compared with ethane, and the difference between δ13C1 and δ13C2 decreases to a minimum. The cracking rates of C4 + C5, C3 and C2 to dry gas successively overtake their generation rates in the later parts of this stage. (c) The data show a rapid decrease in δ13C1–δ13C2 values with increasing ln(C1/C2) during the third stage. In this stage, mass yields of total gaseous hydrocarbons (C1–5) do not change appreciably, but methane increases while wet gas components decrease substantially (Table 3). This suggests that methane is generated in this stage mainly by cracking of wet gas components (C2, C3, C4, C5). Wet gas cracking is characterized by a rapid increase of the δ13C
value of ethane and a relatively slow increase of the δ^{13}C value of methane, leading to the rapid increase in the difference between the δ^{13}C values of ethane and methane.

Based on our observations, we conclude that the trends proposed by Prinzhofer and Huc (1995) only represent part of the three stages we observed.

3.4.3. δ^{13}C_{2}–δ^{13}C_{3} versus ln(C_{2}/C_{3})

Prinzhofer and Huc (1995) also proposed an evolutionary model for both oil cracking and kerogen maturation using the plot of δ^{13}C_{2}–δ^{13}C_{3} versus ln(C_{2}/C_{3}). Plots of this model have been widely applied to identify the two gas types in the petroleum bearing basins in China with high thermal maturation levels (Chang et al., 2001; Qin et al., 2005; Zhang et al., 2007). However, the trends of hydrocarbon gases generated from our experiments on pyrolysis of BA and ER are very different from what has been previously reported. As illustrated in Fig. 7, δ^{13}C_{2}–δ^{13}C_{3}, which is initially greater than zero, trends toward zero with decreasing ln(C_{2}/C_{3}) (i.e., increasing thermal stress and primary cracking of kerogen). Both parameters remain relatively constant in the stage of secondary oil cracking. Finally, in the wet gas cracking stage, the data shows a rapid decrease in δ^{13}C_{2}–δ^{13}C_{3} values with increasing ln(C_{2}/C_{3}), similar to stage (c) in the plot of δ^{13}C_{1}–δ^{13}C_{2} versus ln(C_{1}/C_{2}). Guo et al. (2009) have suggested that δ^{13}C_{2}–δ^{13}C_{3} of the
oil-derived gases increases rapidly, while that of kerogen-derived gases has only a slight increase with increasing \(\ln(C_2/C_3) \) value (i.e., increasing thermal stress).

3.5. Kinetic parameter

3.5.1. Kinetic parameters for the generation of methane and total hydrocarbon gases

Methane and total hydrocarbon gases formed at the different heating rates in our experiments all reach a plateau in cumulative yields which we believe indicates that they have basically reached the end of generation. As a consequence, these data can serve as direct input for the calculation of kinetic parameters. Hydrocarbon gas generation from kerogen and oil cracking is generally described using simple first-order kinetics with a single frequency factor \(A \) and a distribution of activation energies \((E_a) \) (Ungerer and Pelet, 1987; Schenk and Horsfield, 1993; Tang et al., 1996; Behar et al., 1997; Dieckmann et al., 2002, 2006; Dieckmann, 2005). Several previous studies have documented the compensation effect between the frequency factor \((A) \) and the activation energies, and suggested a universal frequency factor for the kinetics of oil generation and destruction (Pelet, 1994; Waples, 2000; Pan et al., 2010, 2012). Pan et al. (2010, 2012) suggested universal frequency factors of \(1 \times 10^{14} \text{S}^{-1} \) and \(1 \times 10^{15} \text{S}^{-1} \) for methane and total hydrocarbon gases generation, respectively. To avoid the compensation effects and to be able to compare with previous studies, we...
used these fixed frequency factors of Pan et al. (2010, 2012) for both sets of experiments. The kinetic parameters for the generation of methane and total hydrocarbon gases are listed in Table 4. The Ea distributions and the fit of the conversion values calculated from the kinetic parameters and measured from the experimental data for methane and total hydrocarbon gases are shown in Figs. 8 and 9.

The Ea of the methane and total hydrocarbon gases generated from the BA and ER exhibit similar distribution patterns, varying from 51 to 75 kcal/mol with \(A = \frac{1 \times 10^{14}}{S} \) S for methane generation and 54 to 78 kcal/mol with \(A = \frac{1 \times 10^{15}}{S} \) S for total hydrocarbon gases generation. The component and stable carbon isotopes of hydrocarbon gases for BA and ER show almost the same evolutionary characteristics.

As with the Ordovician oil studied by Pan et al. (2010, 2012), the predominant Ea of methane generated from BA is 65 kcal/mol with a fixed \(A \) factor \(1 \times 10^{14} S^{-1} \). However, the Ea distribution of methane generated from our experiments using BA is in the range 51–75 kcal/mol and is far lower than that of Ordovician oil (i.e., 60–78 kcal/mol). This indicates that more methane is generated from BA at Ea < 60 kcal/mol and could be attributed to the differences in gross composition (SARA) of the Ordovician oil compared to BA. The Ordovician oil used by Pan et al. (2010, 2012) is rich in saturates (81.7%), while BA is predominantly made up of asphaltenes (83.9%). This is in line with previous studies which have suggested that hydrocarbon gas generation potential is higher for asphaltenes than saturates in the early stages of thermal evolution (Tian et al., 2012).

In addition, the Ea distributions of total hydrocarbon gases generation from BA and ER are relatively more smooth and Gaussian than those from the Ordovician oil. Fig. 9d–f shows that the total hydrocarbon gas generation curves for BA and ER are relatively gentler, while they are steeper for the Ordovician oil. This may indicate that hydrocarbon gas generation from asphaltenes are more gradual and continuous compared with a very rapid onset and initial high yield for generation from saturates.

3.6. Extrapolation to geological conditions

We applied the compositional kinetic model derived from our results to the burial history of the basin as represented by the geological profile of well Gaoke-1, located in the Gaoshiti-Moxi gasfield. The Gaoshiti-Moxi is the largest integral marine gas reservoir in China (Zou et al., 2014) and the area it is located in has experienced two episodes of sedimentation and uplift during its tectonic evolution, controlled by the Caledonian and Himalayan orogenies. For our simulations, we used the burial history of Well Gaoke-1 as modelled by Zhang et al. (2007) (Fig. 10). The geological history indicates that the Caledonian orogeny locally lasted from the end of Silurian to the beginning of Permian, resulting in the absence of Devonian and Carboniferous strata and the erosion of Upper Silurian strata. The area continued to receive sediments from the Early Permian to the Early Cretaceous, with the development of a thick Mesozoic section. Strong uplift began at the end of the Early Cretaceous in this area, resulting in the total erosion of the Lower Cretaceous, Jurassic and part of the Upper Triassic strata. The present burial depths of the Sinian and Lower
Cambrian are approximately 5750 and 4986 m, respectively. The Sinian-Cambrian strata form an important petroleum system in this area, but the source of the natural gas in the Sinian-Cambrian are approximately 5750 and 4986 m, respectively. The Sinian-Cambrian strata form an important petroleum system in this area, but the source of the natural gas in the Sinian-Cambrian strata form an important petroleum system in this area, but the source of the natural gas in the Sinian-Cambrian strata form an important petroleum system in this area, but the source of the natural gas in the Sinian-Cambrian strata form an important petroleum system in this area, but the source of the natural gas in the Sinian-Cambrian strata form an important petroleum system in this area, but the source of the natural gas in the Sinian-Cambrian strata form an important petroleum system in this area, but the source of the natural gas in the Sinian-Cambrian strata form an important petroleum system in this area, but the source of the natural gas in the Sinian-Cambrian strata form an important petroleum system in this area, but the source of the natural gas in the Sinian-Cambrian strata form an important petroleum system in this area, but the source of the natural gas in the Sinian-Cambrian strata form an important petroleum system.

In this paper, we assume that BA and ER were significant secondary hydrocarbon sources in Sinian and Cambrian strata, i.e., ER is the Cambrian residual organic matter and BA is the Sinian reservoired crude oil. Then we modelled these with the kinetic parameters derived from our experiments using the burial history determined from Well Gaoke-1. The results of the modelled gas generation history are shown in Fig. 11.

According to the model, hydrocarbon gas generation from ER started in the Middle Jurassic (approximately 175 Ma), and ended in the Early Cretaceous (approximately 125 Ma) due to inversion after achieving a maximum maturity equivalent to Easy%Ro of

\[\text{Easy%Ro \approx 2.2\%. The final conversion of C}_{1-5} \text{ and C}_{1} \text{ are 0.71 and 0.48, respectively, and the final wetness (C}_{2-5}/C_{1-5}) \text{ is 32.6%. Hydrocarbon gas generation from BA started in the Early Jurassic (approximately 185 Ma), and ended in the Early Cretaceous (approximately 125 Ma) with a final maturity of around Easy%Ro \approx 3.0\%. The final conversion of C}_{1-5} \text{ and C}_{1} \text{ are 0.90 and 0.81, respectively, and the final C}_{2-5}/C_{1-5} \text{ is 11.3\%.}

The model results indicate that the conversion of C}_{1-5} \text{ and C}_{1} \text{ are higher for Sinian reservoired crude oil than for Cambrian residual organic matter, and the wetness of the final hydrocarbon gas is lower from Sinian reservoired crude oil than from Cambrian residual organic matter. This is partly attributed to the higher maturity of the Sinian than the Cambrian. Supporting these results is the observation that the wetness of produced natural gas is lower in Sinian reservoirs than Cambrian ones in the Gaoshiti-Moxi area (Table 5).}

Both sets of experimentally generated hydrocarbon gases have higher wetnesses than corresponding produced natural gases. This is probably due to the closed system nature of the experiments, compared to the more open geological conditions of the natural systems. In summary, our results suggest that Sinian reservoired natural gases were generated from Sinian reservoired crude oil, and Cambrian reservoired natural gases originated from Cambrian residual organic matter.

Table 5

<table>
<thead>
<tr>
<th>Wells</th>
<th>Strata</th>
<th>Hydrocarbon gas composition (%)</th>
<th>(C_{2} + C_{3})/(C_{1} + 100) (%)</th>
<th>Isotopes (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C_{1}</td>
<td>C_{2}</td>
<td>C_{3}</td>
</tr>
<tr>
<td>Moxi-11</td>
<td>Z_{d}</td>
<td>91.19</td>
<td>0.09</td>
<td>0.001</td>
</tr>
<tr>
<td>Moxi-10</td>
<td>Z_{d}</td>
<td>90.12</td>
<td>0.04</td>
<td>0.002</td>
</tr>
<tr>
<td>Moxi-9</td>
<td>Z_{d}</td>
<td>82.66</td>
<td>0.04</td>
<td>0.001</td>
</tr>
<tr>
<td>Moxi-8</td>
<td>Z_{d}</td>
<td>91.12</td>
<td>0.04</td>
<td>0.001</td>
</tr>
<tr>
<td>Moxi-7</td>
<td>Z_{d}</td>
<td>89.97</td>
<td>0.04</td>
<td>0.001</td>
</tr>
<tr>
<td>Moxi-6</td>
<td>Z_{d}</td>
<td>94.6</td>
<td>0.05</td>
<td>0.002</td>
</tr>
<tr>
<td>Moxi-5</td>
<td>Z_{d}</td>
<td>91.41</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>Moxi-4</td>
<td>Z_{d}</td>
<td>91.43</td>
<td>0.04</td>
<td>0.001</td>
</tr>
<tr>
<td>Moxi-3</td>
<td>Z_{d}</td>
<td>91.81</td>
<td>0.05</td>
<td>0.001</td>
</tr>
<tr>
<td>Moxi-2</td>
<td>Z_{d}</td>
<td>93.12</td>
<td>0.05</td>
<td>0.002</td>
</tr>
<tr>
<td>Moxi-1</td>
<td>Z_{d}</td>
<td>89.88</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>c_{1},d_{2}</td>
<td>96.81</td>
<td>0.14</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>c_{1},d_{1}</td>
<td>96.84</td>
<td>0.14</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>c_{1},l_{1}</td>
<td>95.15</td>
<td>0.13</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>c_{1},l_{1}</td>
<td>97.08</td>
<td>0.13</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>c_{1},l_{1}</td>
<td>97.11</td>
<td>0.13</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Data are from Zou et al. (2014).

Average in Sinian.

Average in Cambrian.

4. Conclusions

Two sets of pyrolysis experiments were performed for BA and ER of low-maturity bitumen at two heating rates of 2 °C/h and 20 °C/h in confined systems. Kinetic parameters derived from BA and ER were applied to simulate hydrocarbon generation from Cambrian and Sinian strata. The main observations are:

1. BA and ER have high hydrocarbon generation and exhibit similar evolutionary characteristics of gas generation.
2. Hydrocarbon gas generation from BA and ER have higher C_{1}/C_{2.5} values than those from pyrolysis of Ordovician normal oil. The Ea distribution of methane generation from BA and ER is far lower than that of the Ordovician normal oil.
3. The evolution of stable carbon isotope values of individual hydrocarbon gases may be divided into three stages. Plots of ln(C_{1}/C_{2}) versus ln(C_{2}/C_{3}), δ^{13}C_{1}-δ^{13}C_{2} versus ln(C_{1}/C_{2}), and δ^{13}C_{2}-δ^{13}C_{3} versus ln(C_{2}/C_{3}) are useful in illustrating this process and characteristics of hydrocarbon gases from BA and ER through the different maturity stages.
4. Model results indicate that hydrocarbon gas generation from ER started in the Middle Jurassic, and ended in the Early Cretaceous with achieving a maturity equivalent of Easy%Ro \approx 2.2%. The final conversion rate of C_{1-5} and C_{1} are 0.71 and 0.48, respectively. Hydrocarbon gas generation from BA started in the Early Jurassic, and ended in the Early Cretaceous with an equivalent Easy%Ro \approx 3.0%. The final conversion rate of C_{1-5} and C_{1} are 0.90 and 0.81, respectively.

Acknowledgments

This research was supported by the Chinese Academic of Sciences Key Project (Grant No. XDB10030404) and the National Programs for Fundamental Research and Development of China.
Special thanks go to anonymous reviewers, Associate Editor Dariusz Strapoc and Editor-in-Chief Erdem Idiz for their efforts on this paper.

Associate Editor—Dariusz Strapoc

References

